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Abstract. In the framework of effective-mass envelope function theory, the valence energy
subbands and optical transitions in lateral superlattices (LSLs) have been calculated by the plane-
wave expansion method. The effects of finite offset and valence band mixing are taken into account.
The modulations of several types of lateral potential are also evaluated; they indicate that the out-
of-phase modulation on either side of the wells is the strongest while the in-phase modulation
is the weakest. The lateral modulation periods have a weak effect on the lowest hole energy
levels. When one is making LSLs, the fabrication can be tailored to make the lateral modulation
period fairly large, which is favourable for technological applications. Our calculations also show
that the effect of the difference between the effective masses of holes in different materials on the
valence subband structures is significant. Our theoretical results are in agreement with the available
experimental data and have great significance as regards investigating and making low-dimensional
semiconductor devices.

1. Introduction

Advanced crystal growth techniques such as molecular beam epitaxy (MBE) and metal–organic
vapour-phase epitaxy have made it possible to fabricate semiconductor nanostructures which
are precise on the atomic scale and in which the carrier motion is confined in one, two, or
three spatial directions. The study of these low-dimensional quantum confined systems has
attracted a great deal of attention in the past few years.

Lateral superlattices (LSLs) are made by imposing a periodic modulation on or in the lateral
planes of quantum wells and superlattices. There are two classes of methods of fabricating
LSLs. One is the conventional processing technologies which lead to a direct-patterning
modulation structure on the surface of quantum wells as a result of physical or chemical
processing. The smallest modulation period, on the 100 nm scale, has been achieved in the
last decade by such processing technologies. The second class of methods of making LSLs
evolves epitaxial growth of periodic structures in the lateral direction. The tilted superlattices
and the fractional-layer superlattices, with characteristic lengths of 10 nm or less, belong to
this class. Quantum wires may be regarded as the localization limit of LSLs.

Since the LSLs are ideal systems for use in investigating the effect of dimensionality
crossover on the electric and optical properties of low-dimensional systems, and are useful in
exploring the fabrication technology of quantum wires and dots, a great deal of experimental
and theoretical research has been carried out on them in the past ten years [1–13]. However,
until now, owing to the complicated potential pattern on the lateral planes, only a few
calculations on the electronic subband structures have been carried out [14–18]. Sun [14]
has recently calculated the minigaps between the first two electronic subbands in GaAs/AlAs
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LSLs by using a variational calculation based on the simple two-wave approximation—that is,
the trial wave function is composed of products of the ground state of the quantum well and two
plane waves in the lateral plane which differ by a reciprocal-lattice vector in the modulation
direction. Such an approximation is qualitatively correct only when the modulation period is
much larger than the well width. When the two length scales are comparable or the modulation
period is much less than the well width, we obtain a quite different variation trend of the
minigaps of LSLs for the structure described in reference [18].

Up to now, as far as we are aware, there have been no papers dealing with the valence
subband structure in LSLs. In this paper, we intend to present a simple and efficient calculation
model for the valence subband structure in LSLs. In the calculation, we will include the effect
of finite offset and valence band mixing. Also, we will evaluate the effect of the difference
between the effective masses of GaAs and AlAs on the valence subband energies in LSLs,
which has been shown to be non-negligible for GaAs/AlAs superlattices.

2. The theoretical model

Let l andd be the average GaAs and AlAs widths of the LSLs, respectively;Lz = l + d is the
average period of the LSL along the growth direction of the LSLs, which is taken to be the
z-direction. The interfaces between GaAs and AlAs are at

z = nLz ± (l/2)± f±(x) (n = 0,±1,±2, . . .)

where thef±(x) represent the periodic modulation structures on the lateral planes.
According to Burt and Foreman’s effective-mass envelope function theory [19, 20], the

effective-mass Hamiltonian of the holes can be written as follows:

Hh = H0 + Vh(r). (1)

H0 is the Foreman effective-mass Hamiltonian for the hole state (excluding spin–orbit splitting)
[20] given by

H0 = 1

2m0


P+ R −Q− 0
R+ P− C+ −Q+

+

−Q+
− C P− −R

0 −Q+ −R+ P+

 (2)

where
P± = px(γ1± γ2)px + py(γ1± γ2)py + pz(γ1∓ 2γ2)pz

Q± = 2
√

3
[
(px ± ipy)(σ − δ)pz + pzπ(px ± ipy)

]
R =
√

3
[
(px + ipy)µ(px + ipy)− (px − ipy)γ (px − ipy)

]
C = 2pz(σ − δ − π)(px − ipy)− 2(px − ipy)(σ − δ − π)pz

(3)

and
σ − δ = (−1− γ1 + 2γ2 + 6γ3)/6

π = (1 +γ1− 2γ2)/6

γ = (γ2 + γ3)/2

µ = −(γ2 − γ3)/2.

(4)

γ1, γ2, andγ3 are the Luttinger effective-mass parameters which are functions ofx, y, z:

γ1, γ2, γ3 =
{
γ11, γ12, γ13 for −l/2− f−(x) < z− nLz < l/2 +f+(x)

γ21, γ22, γ23 elsewhere.
(5)
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γ11, γ12, γ13 andγ21, γ22, γ23 are the Luttinger effective-mass parameters of GaAs and AlAs,
respectively.m0 is the free-electron mass.Vh is the hole potential:

Vh(r) =
{

0 for−l/2− f−(x) < z− nLz < l/2 +f+(x)

1Vh elsewhere.
(6)

The hole envelope function equation is

Hh9 = E9. (7)

To make further calculations, we must specify the periodical interface structure. As a
model, we assume that

f±(x) = 1l± cos

(
2πx

Lx

)
(8)

where1l± andLx are the amplitude and period of the modulation structure. Our method can
easily be extended to calculate the hole state in other LSLs with various potential shapes. When
1l− = 0, equation (8) reduces to equation (11) of reference [14]. Clearly, the present model
is more general than the model of reference [14]. Figures 1(a), 1(b), 1(c), and 1(d) show the
four kinds of shape of the two adjacent faces in LSLs, respectively. We can define figure 1(a)
and 1(b) as showing out-of-phase (1l+ = 1l−) and in-phase (1l+ = −1l−) modulations,
respectively. Figure 1(c) corresponds to the modulation structure of reference [14]. Figure 1(d)
shows the case for ordinary superlattices without modulation.

Using the plane-wave expansion method, we assume that the hole wave functions have
the following forms:

9h(rh) = 1

LxLz
eikyy

∑
nm


anm

bnm

cnm

dnm

 ei[(kx+nKx)x+(kz+mKz)z] (9)

with Kx = 2π/Lx ,Kz = 2π/Lz, andn,m = 0,±1,±2, . . ..
The matrix elements of Hamiltonian (1) for equation (9) can be written as

(P±)nm,m′n′ = (γ 1
±δnn′δmm′ + γ

2
±Snm,m′n′)(knxk

′
nx + kyky)

+ (γ 3
±δnn′δmm′ + γ

4
±Snm,m′n′)(kmzk

′
mz)

(Q±)nm,m′n′ = 2
√

3
{[
(σ1− δ1)δnn′δmm′ − (σ1− δ1− σ2 + δ2)Snm,m′n′

]
(k′nx ± iky)kmz

+
[
π1δnn′δmm′ − (π1− π2)Snm,m′n′

]
(knx ± iky)k

′
mz

}
Rnm,m′n′ =

√
3
{[
µ1δnn′δmm′ − (µ1− µ2)Snm,m′n′

]
(knx + iky)(k

′
nx + iky)

− [
γ 1δnn′δmm′ − (γ 1− γ 2)Snm,m′n′

]
(knx − iky)(k

′
nx − iky)

}
Cnm,m′n′ = −2(σ1− δ1− π1− σ2 + δ2 + π2)Snm,m′n′

[
(knx − iky)k

′
mz − (k′nx − iky)kmz

]
(Vh(r))nm,m′n′ = VhSnm,m′n′

(10)

with

knx = (kx + nKx) kmz = (kz +mKz)

k′nx = (kx + n′Kx) k′mz = (kz +m′Kz)

γ 1
± = γ11± γ12 γ 2

± = (γ21± γ22)− γ 1
±

γ 3
± = γ11∓ 2γ12 γ 4

± = (γ21∓ 2γ22)− γ 3
±
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Figure 1. The four kinds of shape of the two adjacent faces in LSLs:f±(x) = 1l± cos(2πx/Lx).
(a), (b), (c), and (d) correspond to out-of-phase modulations (1l+ = 1l− 6= 0), in-phase
modulations (1l+ = −1l− 6= 0), one-face modulations (1l+ 6= 0 and1l− = 0), and an ordinary
superlattice without modulations, respectively.

and

σi − δi = (−1− γi1 + 2γi2 + 6γi3)/6 πi = (1 +γi1− 2γi2)/6

γ i = (γi2 + γi3)/2 µi = −(γi2 − γi3)/2
σi − δi − πi = (−1− γi1 + 2γi2 + 3γi3)/3
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Figure 1. (Continued)

andi = 1 or 2. δnn′ is aδ-function:

δnn′ =
{

1 for n = n′
0 for n 6= n′. (11)

In equation (10), whenm 6= m′,

Snm,m′n′ = i

2π(m−m′) (e
+J + − e−J−) (12)
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Figure 2. The lowest three subband energy dispersions of holes as functions of the wavenumber
in the x-directionkx (a), in they-directionky (b), and in thez-direction (c) withl = 100 Å,
d = 200 Å, Lx = 200 Å, and1l+ = 1l− = 10 Å. The solid and dashed curves show the
results obtained including and excluding valence band mixing between heavy holes and light holes,
respectively.

with

e± = exp{±iπ [(m−m′)l/Lz + (n− n′)/2]}
and

J± = Jn−n′ [2π(m−m′)1l±/Lz]
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Figure 2. (Continued)

whereJn(x) is thenth-order Bessel function ofx. Whenn = n′ andm = m′,
Snm,m′n′ = d

Lz
. (13)

Whenn− n′ = ±1 andm = m′,
Snm,m′n′ = −1l

+ +1l−

2Lz
. (14)

And whenn− n′ 6= 0 or±1, andm = m′,
Snm,m′n′ = 0. (15)

Thus, the valence subbands in LSLs can be worked out from equation (10).

3. Results and discussion

In our calculation, the bulk energy band-structure parameters of GaAs and AlAs are taken from
reference [21] as shown in table 1. The valence band offset1Vh is taken to be 560.8 meV
at the0 point. The number of plane waves expanded in bothx- andz-directions is 13 in our
calculations—that is,n,m = 0,±1,±2, . . . ,±6—and in terms of these, several of the lowest
subbands can be accurately described.

Table 1. The energy band parameters of bulk GaAs and AlAs taken in our calculations

Material E0g γ1 γ2 γ3

GaAs 1.5192 7.10 2.02 2.91
AlAs 3.14 3.94 0.76 1.53

In our model, it is easy to compare the confinement energies for four different modulation
structures (1l+ = 1l− = 10 Å, 1l+ = −1l− = 10 Å, 1l+ = 10 Å and1l− = 0, and
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Figure 3. The lowest three hole energy levels at the0 point as functions of the GaAs average
thicknessl (a), AlAs average thicknessd (b), modulation periodLx (c), and modulation amplitude
1l (d).

1l+ = 1l− = 0). Table 2 gives the lowest three hole energy levels at the0 point with a fixed
GaAs average thicknessl = 100 Å, a fixed AlAs average thicknessd = 200 Å, and a fixed
modulation periodLx = 200 Å. The first hole level has larger confinement energy for two-face
out-of-phase modulation (1l+ = 1l− = 10 Å) and one-face modulation (1l+ = 10 Å and
1l− = 0 Å), which is in contrast to the case for electrons [18]. This is due to the fact that
holes have larger effective masses in AlAs than in GaAs.

In figure 2, we show the hole subband energy dispersion relations as functions of the hole
wavenumberk and in thex-direction (figure 2(a)), in they-direction (figure 2(b)), and in the
z-direction (figure 2(c)), respectively, for samples withl = 100 Å,d = 200 Å,Lx = 200 Å,
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Figure 3. (Continued)

Table 2. The lowest three hole energy levels (meV) at the0 point for GaAs/AlAs LSLs (l = 100 Å,
d = 200 Å,Lx = 200 Å).

1l (Å) 1l+ = 1l− = 10 1l+ = −1l− = 10 1l+ = 10,1l− = 0 1l+ = 1l− = 0

E1 10.467 9.692 10.003 9.886
E2 20.954 21.343 21.089 21.478
E3 21.416 21.677 21.662 21.478

and1l+ = 1l− = 10 Å. The solid and dashed curves are the results obtained including and
excluding valence band mixing between heavy holes and light holes, respectively. For the
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in-phase modulation and one-face modulation, there are similar trends; we have not shown the
calculated results in figure 2. From our calculations, we found the following trends.

(a) As for the electron case [18], there are the minigaps between the hole subbands in LSLs.
For the superlattices without modulation, the minigaps will disappear.

(b) Along thex- and y-directions, the energy dispersions are larger than those in thez-
direction.

(c) The effects of valence band mixing are focused on high subbands.
(d) At the0 point (kx = ky = kz = 0), as in generally known, there is no valence band

mixing for the superlattices without modulation. But for LSLs, there is also valence band
mixing at the0 point due to the lateral modulation.

(e) The anticrossings of hole levels are decreased in number by the effect of the valence band
mixing (figure 2(a)).

Figures 3(a), 3(b), 3(c), and 3(d) show the lowest three hole energy levels at the0 point as
functions of the GaAs average thicknessl, AlAs average thicknessd, modulation periodLx ,
and modulation amplitude1l, respectively.l = 20 Å in figure 3(a) andd = 20 Å in figure 3(b)
are the cases of quantum well wires and quantum barrier wires, respectively. Figures 3(a) and
3(d) indicate that the well (GaAs) thicknessl and modulation amplitude can strongly affect
the lowest hole energy levels. The barrier (AlAs) thicknessd and modulation periodLx
have a weak effect on the lowest hole energy levels, as can be seen in figure 3(b) and 3(c),
respectively. When one is making lateral structures, the fabrication can be tailored to make
the lateral modulation period fairly large, which is favourable for technological applications.
Due to the lateral modulation, there is a minigap between the second and the third hole energy
levels at the0 point. The minigap increases as the modulation amplitude increases, which can
be seen in figure 1(d). From our calculation, we also found that the minigap between the first
and the second hole energy levels appeared atkx = π/Lx .
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Figure 4. Hole subband energy dispersions at the0 point as functions of the hole wavenumber in
thex-directionkx with l = 100 Å,d = 200 Å,Lx = 200 Å, and1l+ = 1l− = 10 Å. The solid
and dotted curves represent the results obtained taking account and without taking account of the
difference between the effective masses in the well and barrier, respectively.
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To examine the effect of the difference between the effective masses of the hole in the
well and barrier materials on the energy subband dispersions, we have calculated the hole
subband dispersions as functions of the hole wavenumber in thex-directionkx with l = 100 Å,
d = 200 Å,Lx = 200 Å, and1l+ = 1l− = 10 Å. The results are shown in figure 4. The
solid and dotted curves represent the results of taking different effective masses and taking the
same effective masses (in GaAs), respectively. This figure shows that the different effective
masses of holes in different materials significantly affect the subband dispersion, which can
be as large as 0.2 meV for the first subband atkx = 0 with the above structure parameters.
The difference is even larger than 0.2 meV at other points of the reduced Brillouin minizone
in the LSLs.

Notzel et al reported on the direct synthesis of superlattices with lateral corrugation of
the interfaces on (311) GaAs substrates by MBE [22]. The structure was shown in figure 1 of
reference [22]. The lateral corrugation can be simplified to a cosine function withLx = 32 Å
and1l+ = 1l− = 5.1 Å. The first peak of the experimental photoluminescence was located at
1.605 eV. Our theoretical result is 1.619 eV. The theoretical value is higher than the experimental
result by about 14 meV. The reason for this is probably that we have not taken into account the
binding energy of the exciton.

4. Summary

Within the effective-mass envelope function theory and the plane-wave expansion formalism,
the hole subband structure for GaAs/AlAs LSLs has been calculated. Among the three
types of modulation studied in this paper, the out-of-phase modulation increases the quantum
confinement most while the in-phase modulation has the weakest effect. The lateral modulation
period has a weak effect on the lowest hole energy levels. Our calculation also indicates the
importance of using realistic effective masses for GaAs and AlAs when calculating the subband
dispersion. The conclusion of this paper has some significance as regards investigating and
making low-dimensional semiconductor devices.
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